
SECTION 1: LUNAR HISTORY 
 

Dr. Jennifer Edmunson 
 
1.1 Introduction 

 
Why understanding events in lunar history is important for engineers and 
simulant users: 
 

• It explains the motivation for exploration of the Moon. 
o To understand the evolution of our own planet. 

• It explains the origin of the operating environment for spacecraft, and 
ultimately influences the spacecraft design. 

• It describes human and spacecraft hazards. 
o Morphology of the landing site. 
o Micrometeorite bombardment. 
o Lunar regolith (boulders, dust). 

• It influences landing site locations. 
o Areas in permanent sunlight and shadow. 
o Regions of interest to scientists. 

• It provides the basis for predicting the chemical composition and 
physical properties of the lunar surface at specific sites. 

• It explains the impact history of the moon, which has changed the 
surface into its present form (creating the regolith). 

• It describes the processes that created the size distribution of regolith 
components, as well as their chemistry. 

 
1.2 Initial Impact 

 
The Earth and Moon have similar chemistries and share the same oxygen 

isotope signature. This oxygen isotope signature is different from other planets 
and asteroids.  Because of this, the Earth and Moon must have formed at the 
same distance from the Sun, or from a single chemical reservoir. 

The “Giant Impact” theory of lunar origin involves the proto-Earth being 
struck by a Mars-sized impactor (called Theia).  Scientists favor this theory 
because it explains not only the similarities in composition (and the identical 
oxygen isotope signature) and the known mass of both the Earth and Moon, but 
the angular momentum of the Earth-Moon system. 

As shown in Figure 1, an oblique impact to the proto-Earth by a Mars-sized 
body would send a debris ring into orbit.  This debris would coalesce to form the 
Moon.  The accretion of this debris, by gravity, provided sufficient heat to melt 
the Moon (and shape it into a sphere). 

 



Figure 1: A model following the “Giant Impact” theory for lunar formation.  In this 
scenario, a Mars-sized body (called Theia, in blue) impacted the proto-Earth 
(green) obliquely.  Color indicates temperature.  Debris ring around the Earth 
coalesced to form the Moon.  Figure from Canup and Asphaug, 2001. 

 
1.3 Crust Generation 

 
At this stage, the Moon is melted sufficiently to have a magma ocean at the 

surface.  There are two models for the formation of the lunar crust (highlands) 
that start at the post-formation magma ocean on the Moon. 

 
The Lunar Magma Ocean Model and the Postmagma Ocean Model 

 
Following the Apollo 11 mission and the return of the first lunar samples, 

Smith et al. (1970) and Wood et al. (1970) proposed similar models for the 
formation of the lunar crust.  These two proposals have changed over time, with 
an increasing database of geochemical information, into the Lunar Magma 
Ocean (LMO) model.  The following summarizes the work of Snyder et al. (1992). 

This model depends on multiple factors.  The crystallization temperature and 
pressure of specific minerals (olivine, pyroxene, and anorthite; compositions of 
cumulates dependent on Bowen’s Reaction Series), the density of those 
minerals, and the presence of incompatible elements all influence the end 
result of the LMO model.  Figure 2 illustrates the sequence of crystallization 
events in the LMO model. 

 



 

Figure 2: Stages of Lunar Magma Ocean crystallization.  PCS = percent 
crystalline solid.  The first cumulates to form (green) are composed of olivine 
and pyroxene minerals, which are more dense than surrounding magma.  At 78 
PCS, anorthite begins to form.  Since anorthite is less dense than the 
surrounding magma, the anorthite crystals begin to float.  These crystals 
continue to form until the entire lunar surface is composed of anorthosite 
cumulates, the ferroan anorthosites (FANs).  The residual (trapped) magma from 
the LMO, rich in incompatible elements, forms dense ilmenite cumulates, then 
KREEP.  This illustration drafted above assumes whole Moon melting, which has 
not been verified. 

 
The LMO model does not explain all highlands lithologies (rock types).  

Cumulate overturn after crystallization of the LMO is required to explain the 
calculated depth of melting (magma generation depth) and geochemistry of 
another highland lithology, the magnesium suite (Mg-suite).  A magnesium-rich 
major element composition (typically seen in the first-formed cumulate crystals of 
the LMO) and a KREEP incompatible element signature (observed in the latest-
stage of LMO crystallization) characterize the Mg-suite.  Cumulate overturn 
involves the sinking of the dense ilmenite cumulates into the lunar mantle, 
entraining “KREEPy” material.  Most elements that make up the KREEP 
signature are radioactive and heat-producing, which may have caused the Mg-
suite parent magma to begin rising to the surface.  The Mg-suite parent magma 
would be too dense to erupt on the surface of the Moon, so it is likely that the 
lunar crust trapped the molten material below the surface.  Following the 
formation of these Mg-suite plutons, impact gardening exposed them. 

The Postmagma Ocean model was proposed by J. Longhi in 2003 to 
reconcile the fact that some radiogenic isotope ages determined for FANs and 

 



rocks of the Mg-suite overlap.  This model also suggests that the core of the 
Moon did not melt to become part of the original magma ocean, and that 
primitive, chondritic material makes up the core of the Moon.  Detailed 
experimental petrology studies indicate that Mg-suite rocks can be formed 
without entire Moon melting, and that FAN magmatism may have led to the 
concurrent crystallization of Mg-suite rocks. 

 
 

Figure 3: Model for the origin of the lunar crust as suggested by Longhi (2003).  
T = time, Ma = million years, ρ = density (corresponding red lines indicate density 
changes in the layers of the Moon, with increasing density towards the right side 
of the diagram).  In this stage, mafic layers include pyroxene and anorthite, and 
ultramafic layers contain mostly olivine.  Convection and density-induced 
overturn occurs in both layers and is independent of the adjacent layer.  This 
overturn causes a heating of the primitive lunar core.  The primitive core begins 
to melt and rise towards the surface.  The density of the melt prevents it from 
reaching the lunar surface.  Thus, Mg-suite plutons (orange) are formed.  
Meanwhile, heating in the upper layer due to this overturn causes partial melting 
of cumulates, which separate into a less dense FAN parent liquid (blue, which 
begins to rise) and a more dense pyroxenite liquid (purple, which begins to sink).  
The final illustration (right) shows the FAN crust that formed at the same time as 
the Mg-suite.  Ur-KREEP is the name for a physical KREEP material (black). 

 



 
Comments 

 
Comparative radioisotope studies (147Sm-143Nd) of Mg-suite rocks indicate 

formation of KREEP at approximately 4518 ± 85 Ma (Edmunson and Nyquist, 
2007).  Further studies on the accuracy of FAN ages are underway at Marshall 
Space Flight Center, and a study regarding the petrogenetic links between FANs 
and the Mg-suite has been proposed. 

 
1.4 Impactors 

 
Craters cover the surface of the Moon (Figure 4).  Because of the Apollo 

missions and the samples returned from their selected landing sites, scientists 
have been able to determine the relative ages of the craters on the Moon.  That 
is, scientists have determined a stratigraphy of the impact craters and their 
ejecta on the Moon, and have calibrated it to represent specific times in lunar 
history (i.e., the “crater counting” method of determining the age of specific 
areas of the lunar surface). 

 

 
Figure 4: Photomosaic of the lunar surface as seen by the Clementine 
spacecraft.  Image obtained from P. Spudis.  Light areas are highlands, dark 
areas are mare (sea in Latin).  Mare lava flows fill crater basins, so mare are 
younger than the highlands rocks and the craters they fill (superposition). 
 
1.4.1 Periods 

 
Scientists have designated geologic time periods (similar to those for 

Earth) based on events in lunar history (Figure 5).  The formation age of the 
Nectaris basin is interpreted to be approximately 3920 Ma and is based on the 

 



combined age of brecciated samples (James 1981).  Imbrian and Copernican 
periods start from the formation of the Imbrium basin and Copernicus crater, 
respectively.  The Eratosthenian period, however, begins at the age of the mare 
lavas on which the Eratosthenes crater ejecta is superimposed. 

 
Figure 5: A geologic time scale of events on the Moon. O = Oceanus.  Modified 
from an image obtained from R. L. Nowack.  The ages defining specific periods 
in the history of the Moon are subject to change with new data or further sample 
return from the Moon. 
 
 
 

 



The Lunar Cataclysm 
 
One can note from Figure 5 that the majority of impacts (basin formation 

events) occurred very early in lunar history.  Indeed, scientists believe that the 
number of impactors decreased exponentially since the creation of the Solar 
System.  This is likely due to instabilities in the original orbits of the impactors 
and their consumption by the Sun or by accretion to a larger body.  However, 
around 3900 Ma, a spike can be resolved in the isotopic ages obtained from 
lunar samples (e.g., Kring, 2000; Kring and Cohen, 2002).  This spike is thought 
to represent a large-scale heating event (metamorphism) caused by a relatively 
short-lived increase in the number of impacts on the lunar surface from asteroids 
or comets (Tera et al., 1974).  Some have even hypothesized that life on Earth 
was affected by this cataclysmic event. 

Figure 6: Illustration of the lunar cataclysm (figure by B. A. Cohen). 
 

1.4.2 Size Distribution Versus Time 
 
To further characterize the impact history of the Moon, comparisons were 

made between the size and frequency of craters for given time periods.  Figure 7 
shows the diameter of craters versus the number of craters per square kilometer.  

 



This figure shows that Prenectarian craters are larger in size than Nectarian 
craters, which are in turn larger than Imbrium-period craters.  Copernican and 
Eratosthenian period craters are smaller still in size.  This indicates that the 
largest craters on the Moon were formed during its earliest history, and the size 
of the impactors has decreased significantly over time. 

Figure 7: Cumulative crater size vs. frequency for the lunar surface (Wilhelms, 
1987).  Dashed curves indicate the average frequency of impact craters of 
Prenectarian (pNc), Nectarian (Nc), Imbrian (Ic) and the Copernican and 
Eratosthenian (CEc) periods.  Please note that this diagram does not imply that 
smaller craters were not part of the early bombardment of the Moon, but that they 
were covered by larger crater ejecta. 

 

 



1.4.3 Nature of an Impact 
 
The following is a chronology of a hypothetical impact on the Moon, and is 

a modified summary of the work by B. French (1998), with supplemental 
information from Hörz et al. (1991).  Figure 8 illustrates this process. 

 
(1) A body impacts the surface (target) traveling at greater than 3km/s 

(cosmic impact velocities are 15-20km/s). 
(2) Depending on the energy of the impact, vaporization of the impacting body 

can occur. 
(3) The target rock is compressed at the impact site. 
(4) A hemispherical shock wave travels outward from the impact site, pushing 

all surrounding rocks outward, ejecting near-surface material (ejecta), 
and, in most cases, melting the uppermost impacted rocks (flinging 
some of this material from the ejection site, giving rise to tektites). 

(5) The ejecta blankets the surrounding area. 
(6) The rocks surrounding the impact site (hemisphere) that are not melted 

rebound to their original positions (rarefaction wave), but become 
brecciated in the process (they do not have elastic properties). 

(7) Craters are filled with vertically ejected material, portions of melted rock, 
parts of the crater walls that exceed the angle of repose and collapse 
into the crater, and the ejecta blanket on top of the collapsing crater 
walls.  Lithification occurs by (shock) compaction or welding. 

(8) The final (apparent) crater appears shallower than the true crater (where 
the fractured rock begins). 

 
Simple craters, discussed above, are only less than a few kilometers 

across.  Larger craters, caused by larger impactors, tend to have different 
characteristics due to the increased rebounding effect on the rocks below the 
impact site.  Like ripples caused by a water droplet falling into a puddle, the rocks 
below the center of the transient crater are pushed outward by the impact, inward 
by rarefaction, and upward in response.  This upward motion creates a central 
uplift in complex craters (e.g., Dense, 1968).  Note that the central uplift is 
composed of rocks that were below the surface of the target rocks prior to impact 
(Figure 9). 
 
1.4.3.1 Crater Morphology 
 

The following set of photos is labeled for ease of reference (Figures 10-
13). 

Figures 10, 11, and 12 have one thing in common – the trajectory of the 
impactor was at a high angle relative to the surface of the Moon.  The 
morphology of oblique (low angle) impacts is slightly different (Figure 13). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Formation of a simple crater (French, 1998). 
 

 



 
Figure 9: Formation of a complex crater and central uplift (French, 1998). 
 

 



 
Figure 10: Morphology of a simple crater (Anville).  Diameter 11km.  Photograph 
taken during the Apollo 11 mission.  

 
Figure 11: Morphology of a complex crater (Copernicus).  Diameter 93km.  
Photograph taken during the Apollo 12 mission. 

 

 

 



 
Figure 12: Morphology of a multi-ring basin (Schrödinger).  Yellow arrows 
indicate interior peak ring (150km in diameter), black arrows indicate exterior of 
the impact structure (320km in diameter).  Photograph from the Clementine 
orbiter. 

 
Figure 13: Morphology of an oblique impact.  Photomosaic of Schiller crater 
taken by Damian Peach (from Earth).  Crater is 220km in length. 

 
 
 

 

 

 



1.4.3.2 Fracturing 
 

Fracturing is the result of the least amount of shock on a sample.  Figure 
14 shows a thin section (approximately 30um-thick slice of rock) of a lunar lithic 
breccia.  It is called a lithic breccia because it contains no impact melt glass.  The 
samples are pulverized, generally at shock pressures less than 50 kilobars 
(Maier, 1995).  This kind of shock creates compaction, during which the samples 
become lithified. 

 
Figure 14: Plane-polarized light photomicrograph of lithic breccia 76335, thin 
section 61.  Note large, shattered mineral grains and areas of significant 
brecciation (forming grains that are too small to be seen on this scale).  Section 
is approximately 1.9cm in length.  Photomicrograph by J. Edmunson. 

 
1.4.3.3 Melting 

 
When the temperature and pressure of shock becomes great enough, 

meting occurs.  Minerals tend to melt at grain boundaries first.  Figure 15 shows 
an example of an impact melt breccia. 

 



 
Figure 15: Impact melt breccia 65015.  Crossed polarized light, showing impact 
melt glass (black) amid areas of both large and small mineral grains.  Colors are 
the result of mineral type and the ability of the crystal to bend transmitted light.  
Photomicrograph by B. Jolliff. 

 
1.4.3.4 Shock Welding 

 
Experiments indicate that shock welding can occur in loose lunar soil at 

pressures as low as 160 kilobars. (Schaal and Hörz, 1980).  Shock welding 
involves heating by the shearing of grains, creating melts in between the grains 
and ultimate lithification during cooling of the glass (melt).  This shock glass 
represented between 5 and 30% of the total sample in the experimental study. 

 
1.5  “Recent” Processes 

 
Figures 5, 6, and 7 all show that the frequency of impacts, and the size of the 

impact craters generated, has decreased over time.  Thus, other processes have 
become dominant mechanisms in altering the surface of the Moon.  The following 
is a brief summary of these processes.  More detailed analysis will be presented 
in following chapters. 

 
1.5.1 Micrometeorites 

 
Micrometeorites are small meteorites (less than 1mm in diameter) that 

vaporize on impact with the lunar surface, imparting approximately 1 Joule of 
energy.  This method of surface erosion is akin to sandblasting, and is estimated 
to occur at a rate of 1mm/106 years for kilogram-sized rocks on the lunar surface 
(Ashworth, 1977).  Micrometeorites create agglutinates on the lunar surface, as 
well as reduce oxidized (crystal structure) iron into iron metal in the agglutinates 
(McKay et al., 1991).  Figure 16 shows the damage to a lunar sample by 
micrometeorite impact.  Micrometeorites are also capable of penetrating man-

 



made materials, so spacesuits are built with several layers of Kevlar and Dacron 
to prevent penetration and decompression of the suit.  The estimated amount of 
material delivered as micrometeorites on Earth (Love and Brownlee, 1993) can 
be applied to the Moon.  An estimated annual micrometeorite mass of 80g/km2 is 
added to the lunar surface.  This equates to an approximate 5-10 micrometeorite 
impacts per year on every square meter of the lunar surface. 

 

 
Figure 16: Photograph of the surface of Apollo 16 sample 64455, revealing the 
erosion of the surface from exposure to micrometeorites.  NASA photograph 5-
78-22656. 

 
1.5.2 Solar Wind 

 
“Solar wind” is used to describe the abundant, low-energy (1KeV) particles 

(i.e., protons, electrons, and alpha particles to a lesser extent, as well as light 
volatile elements) being emitted by the Sun and implanted, typically to a depth of 
a few tens of nanometers, into the lunar surface (e.g., Lucey et al., 2006 and 
references therein).  Some of the implanted material is able to diffuse out of the 
rock, but much of it remains implanted.  This bombardment ultimately causes a 
decrease in the albedo of the lunar surface.  The Moon’s lack of an atmosphere 
allows very concise study of solar wind particles and their implantation.  Solar 
energetic particles, those accelerated to 1-100MeV, can be implanted up to 
approximately 1cm in depth. 

 



 
1.5.3 Radiation 

 
Radiation of the lunar surface by galactic cosmic rays (those particles with 

energies of 100MeV to 10GeV) can change the chemistry of the surface.  
Neutron capture reactions can create higher concentrations of specific isotopes 
(e.g., 150Sm from 149Sm), and this effect decreases with depth from the lunar 
surface.  Scientists have used this technique to determine the depth at which the 
sample was exposed to cosmic rays.  The cosmic ray particles can also produce 
lighter elements and isotopes (such as 15N, used to calculate the rate of 
spallation at the lunar surface by Mathew and Marti, 2001).  Galactic cosmic rays 
are composed of approximately 87% protons, 12% alpha particles, and 1% 
heaver ions.  They can penetrate meters into the lunar surface.  (Lucey et al., 
2006). 

 
1.5.4 Generation of Agglutinates 

 
Agglutinates are aggregates of other regolith particles on the lunar surface, 

including other agglutinates (e.g., Duke et al., 1970).  They are cemented 
together by vesicular impact melt glass, indicating their formation by 
micrometeorite impact.  Agglutinates are typically less than 1mm in size, and can 
constitute approximately 60% of mature lunar soils by volume (Papike et al., 
1998). 

 
1.6 Lack of Sorting Relative to Terrestrial Rocks 

 
In geology, sorting refers to the proportion of grains of a particular size range 

in a given sample.  Geologists refer to samples, such as the lunar regolith, as 
poorly sorted when they contain multiple-sized grains.  Most terrestrial samples, 
because of their formation by weathering and deposition by water or wind – 
such as beach sand, are considered well sorted.  Water and wind are capable of 
suspending very specific grain sizes at specific velocities.  Impacts, on the other 
hand, break up target material into multiple sizes and transport it via projectile 
motion.  The surface of the Moon is covered with the results of 4567 Ma of 
impact, volcanism, solar wind bombardment, cosmic ray-induced reactions, and 
agglutinate generation.  These processes have led to the formation of a lunar 
regolith with very poorly sorted grains. 

 
1.7 Vocabulary 

 
Modified and annotated from the Dictionary of Geological Terms, 3rd edition. 

 
Accretion: Any hypothesis of the origin of a planetary body which assumes that 
it has grown from a small nucleus by the gradual addition of solid bodies, such as 
meteorites, asteroids, or planetesimals, formerly revolving about the Sun (or 



planet) in independent orbits, but eventually drawn by gravitiation to the forming 
planetary body and incorporated with it. 

 
Albedo: The percentage of the incoming radiation (light) that is reflected by a 
natural surface. 

 
Anorthite: A white or gray mineral of the feldspar (plagioclase) group: 
CaAl2Si2O8. 

 
Anorthosite: A rock composed almost wholly of plagioclase (anorthite). 

 
Basin: A depressed area with no surface outlet (e.g., crater). 

 
Bowen’s Reaction Series: A series of minerals in which any early-formed 
mineral phase tends to react with the melt, later in the differentiation, to yield a 
new mineral further down in the series.  This series shows which minerals form 
first, and which form later during the crystallization process.  Thus, each mineral 
in this series has different properties – temperature and pressure of formation, 
chemistry, and reactivity.  Figure describing Bowen’s reaction series from Idaho 
State University. 

 
 

 



Chondritic: A composition resembling that of the earliest solar system material, 
as observed in un-differentiated stony meteorites.  Chondritic meteorites contain 
both metals and silicate minerals. 

 
Crater Counting: A method of determining the age of a specific area based on 
the number of craters within that area.  This number is correlated to both the 
impactor flux and, in the case of lunar samples, with radioisotope ages. 

 
Cumulate Overturn: A density-driven movement of crystals.  More dense 
minerals will sink, while less dense minerals will rise. 

 
Cumulates: Crystals that settle out from a magma by the action of gravity. 

 
Ejecta: Glass, rock fragments, and other material thrown out of an explosion or 
impact crater during formation. 

 
Experimental Petrology: The science that involves using known chemical 
constituents (e.g., certain metal oxides), melting them, and observing what 
crystals or melt compositions form at specific temperature and pressure 
conditions. 

 
FAN (ferroan anorthosite): Specific to the Moon, ferroan anorthosites are 
anorthosites that have higher than terrestrial (Earth) Fe abundances. 

 
Highlands: The heavily cratered, white portion of the Moon.  Ferroan 
anorthosites and Mg-suite rocks are considered highland rock types. 

 
Ilmenite: An iron-black opaque mineral, FeTiO3.  It is the principal ore of titanium. 

 
Incompatible element: An element that does not fit readily into the structure of a 
mineral due to ionic radius or charge. 

 
KREEP: The latest-stage of differentiation of the Moon, a concentration of 
incompatible elements.  The acronym KREEP stands for potassium (K), rare 
earth elements (REE) and phosphorous (P). 

 
Lithification: The conversion of deposited sediment into a solid rock, involving 
such processes as cementation, compaction, and crystallization. 

 
Magma Ocean: Molten rock that covers the surface of a planet.  The (likely) 
original state of a planet prior to the formation of a core, mantle, and crust 
(differentiation).  The depths of magma oceans are unknown, and may in fact 
involve the entire planet. 

 
Metamorphism: The mineralogical, chemical, and structural adjustment of solid 
rocks to physical and chemical conditions imposed at depth below the surface 



zones of weathering and cementation (or temperature and pressure changes 
during impact), which differ from the conditions under which the rocks originated. 

 
Micrometeorite: A meteorite particle with a diameter generally less than a 
millimeter, so small that it undergoes atmospheric entry (on Earth) without 
vaporizing or becoming intensely heated and hence without disintegration. 

 
Olivine: A green or brown mineral, (Mg,Fe)2SiO4.  It is a common rock-forming 
mineral, crystallizes easily from magma, and weathers readily under terrestrial 
surface conditions. 

 
Pluton: An igneous intrusion (that is, a magma body that is emplaced below the 
surface and solidifies). 

 
Pyroxene: A group of common rock-forming minerals with the general formula 
(Mg,Fe,Ca,Na)(Mg,Fe,Al)Si2O6. 

 
Regolith: The fragmental and unconsolidated rock material, whether residual or 
transported, that nearly everywhere forms the surface of the land and overlies 
the bedrock.  It includes rock debris of all kinds. 

 
Stratigraphy: The arrangement of strata (geologic layers), especially as to 
geographic position and chronologic order of sequence.  Chronology is 
dominated by the Principal of Superposition. 

 
Superposition: The order in which rocks occur in strata one above the other, the 
highest being the youngest (older rocks must underlie younger rock strata). 

 
Tektites: A rounded pitted jet-black to greenish or yellowish body of silicate glass 
of non-volcanic origin (products of large hypervelocity meteorite impacts). 

 
Vesicular: Containing small cavities in glassy igneous rock, formed by the 
expansion of a bubble of gas during solidification. 

 
Weathering: The destructive processes by which rocks are changed on 
exposure to atmospheric agents at or near the Earth’s surface, with little or no 
transport of the loosened or altered material; specific to the physical 
disintegration and chemical decomposition of a rock. 
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